The Z2-graded Schouten–Nijenhuis bracket and generalized super-Poisson structures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instantons, Poisson structures and generalized Kähler geometry

Using the idea of a generalized Kähler structure, we construct bihermitian metrics on CP2 and CP1×CP1, and show that any such structure on a compact 4-manifold M defines one on the moduli space of anti-self-dual connections on a fixed principal bundle over M . We highlight the role of holomorphic Poisson structures in all these constructions.

متن کامل

The Generalized Peierls Bracket

We first extend the Peierls algebra of gauge invariant functions from the space S of classical solutions to the space H of histories used in path integration and some studies of decoherence. We then show that it may be generalized in a number of ways to act on gauge dependent functions on H. These generalizations (referred to as class I) depend on the choice of an “invariance breaking term,” wh...

متن کامل

Z2-Graded Cocycles in Higher Dimensions

Current superalgebras and corresponding Schwinger terms in 1 and 3 space dimensions are studied. This is done by generalizing the quantization of chiral fermions in an external Yang-Mills potential to the case of a Z2-graded potential coupled to bosons and fermions.

متن کامل

The Complete Solution of 2d Superfield Supergravity from Graded Poisson-sigma Models and the Super Pointparticle

Recently an alternative description of 2d supergravities in terms of graded Poisson-Sigma models (gPSM) has been given. As pointed out previously by the present authors a certain subset of gPSMs can be interpreted as “genuine” supergravity, fulfilling the well-known limits of supergravity, albeit deformed by the dilaton field. In our present paper we show that precisely that class of gPSMs corr...

متن کامل

Super{geometric Quantization Stage 1 | Prequantization. Let M Be a Poisson Manifold with the Poisson Bracket (1.1)

Let K be the complex line bundle where the Kostant-Souriau geometric quantization operators are deened. We discuss possible prolongations of these operators to the linear superspace of the K-valued diierential forms, such that the Poisson bracket is represented by the supercommutator of the corresponding operators. We also discuss the possibility to obtain such super-geometric quantizations by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 1997

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.532065